
lable at ScienceDirect

Journal of Structural Geology 31 (2009) 546–560
Contents lists avai
Journal of Structural Geology

journal homepage: www.elsevier .com/locate/ jsg
Optimized trishear inverse modeling

Nestor Cardozo a,*, Sigurd Aanonsen b

a Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
b StatoilHydro, Postboks 7200, 5020 Bergen, Norway
a r t i c l e i n f o

Article history:
Received 11 June 2008
Received in revised form
13 February 2009
Accepted 2 March 2009
Available online 13 March 2009

Keywords:
Trishear
Inverse modeling
Optimization
Uncertainty
* Corresponding author. Tel.: þ47 5183 2391.
E-mail addresses: nestor.cardozo@uis.no, nfcd@ma

0191-8141/$ – see front matter � 2009 Elsevier Ltd.
doi:10.1016/j.jsg.2009.03.003
a b s t r a c t

We describe the application of optimization methods to 2D and 3D trishear inverse modeling. These
optimization methods traverse the parameter space in search for the combination of trishear parameters
that best restores a fold profile to a straight line in 2D, or a folded surface to a plane in 3D. Optimized
trishear inverse modeling is significantly faster than the standard grid-search method. An optimized
search of all six parameters of a 2D trishear model can be conducted in seconds. Gradient-based opti-
mization methods converge to the solution much faster than the simplex optimization method, and
therefore are the preferred choice for 2D or 3D inversions involving a large number of parameters. The
optimization algorithms, however, are affected by local minima. This is particularly an issue in the
inversion of actual fold data, where local minima can occur even in a parameter space of low dimensions.
Local minima can be assessed by running several optimizations from different regions in the parameter
space. Physically meaningless local minima can be avoided by constraining the optimization. Fast,
optimized trishear inverse modeling makes possible within hours, heavy tasks such as estimating the
uncertainties of the best-fit parameters by the inversion of hundreds of fold realizations. We illustrate
this technique using synthetic fold data and an actual fault-propagation fold from the Los Angeles Basin,
the Santa Fe Springs anticline.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Trishear is a kinematic model of fault-propagation folding in
which the decrease in displacement along the fault is accommo-
dated by heterogeneous shear in a triangular zone radiating from
the fault tip (Erslev, 1991; Allmendinger, 1998). Trishear explains
features that cannot be explained by the self-similar, parallel kink
fold model (Suppe and Medwedeff, 1990), such as (i) Changes in
stratigraphic thickness and dip of fold forelimbs, (ii) Footwall
synclines, (iii) Rounded and angular fold hinges, and (iv) Fold
geometry and strain that change with proximity to the fault.

Compared to the kink fold model, however, trishear presents
a fundamental problem in the inverse modeling of real fault-
propagation folds. Trishear must be applied numerically
(i.e. incrementally) rather than graphically. Knowledge of the fold
geometry relies on knowledge of its incremental evolution.
Allmendinger (1998) devised a solution to this inverse problem.
Since trishear can be run backwards, he implemented a grid-search
algorithm that finds the combination of trishear parameters that
best restores a 2D fold profile to a straight line. Cardozo (2005)
c.com (N. Cardozo).

All rights reserved.
extended this strategy to the situation of beds outcropping along
a topographic profile. In this case, the grid-search algorithm finds
the combination of trishear parameters that best reproduces the
attitude and spacing of the beds intersections along the topo-
graphic profile.

Allmendinger (1998) and Cardozo (2005) are robust solutions
for trishear inverse modeling. Grid searching the parameter space
(which can be up to six dimensions in 2D), however, is inefficient. In
this paper, we describe the use of several optimization algorithms
that speed up trishear inverse modeling. Rather than systematically
searching the parameter space for a minimum, the optimization
algorithms traverse the parameter space in ideal directions towards
a minimum, thus reducing the time of estimation of the best-fit
parameters. Using the optimization algorithms, a search of all six
parameters of a 2D trishear model can be conducted in seconds, as
opposed to the hours it can take using the grid-search algorithm.

An optimized parameter estimation is a prerequisite for 3D
trishear inverse modeling, where the parameter space can be up to
fourteen dimensions. We show the application of the optimization
algorithms to 3D trishear inverse modeling. By analogy with 2D
trishear inverse modeling (Allmendinger, 1998), in 3D the optimi-
zation algorithms search for the combination of parameters that
best restores a folded surface to a plane. This strategy works with
either pseudo or true-3D trishear models (Cardozo, 2008), and
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Fig. 1. 2D forward trishear models and their key parameters, a. Reverse fault, b. Normal fault. Bed 3 in a and b was fed into the grid-search (Figs. 2 and 3) and optimized search (Figs.
4 and 5 and Table 1) procedures to test the accuracy of these techniques. Tables in a and b show the range of values tested in the grid-search procedure.
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allows the rapid estimation of the best-fit parameters and their
variation along fault strike.

Fast trishear inverse modeling makes more feasible statistical
analyses for estimating the uncertainties of the best-fit parameters.
We describe a methodology for generating synthetic fold profiles
(i.e. realizations) from a measured fold profile with uncertainties in
location. Optimized trishear inverse modeling of these realizations
gives a set of simulated, best-fit parameters, from which confidence
limits on the best-fit parameters can be estimated.

2. The problem

The basic problem in trishear inverse modeling is how to deter-
mine the model (i.e. the combination of model parameters) that best
fits a folded profile in 2D or surface in 3D. In kink fold models, one
can measure dip panels and use a set of rules (Suppe, 1983; Suppe
and Medwedeff, 1990) to estimate the appropriate parameters. In
trishear, however, there are no rules (i.e. mathematical relations)
to estimate model parameters such as fault propagation to slip ratio
(P/S) or trishear angle (apical angle of triangular zone) from the fold
geometry. Trishear inverse modeling is a trial and error process in
which a group of models, systematically or randomly chosen, is
compared to the data, and the model with the closest agreement to
the data is chosen as the solution. The agreement between the data
and the model with a particular choice of parameters is measured by
an objective function (or merit function) that by convention is small
when the agreement is good (Press et al., 1992).

Since trishear can be run forwards or backwards, the objective
function can be designed to measure either how well a model
restores folded beds, or how well a model deforms beds from their
undeformed configuration. The first approach works well when the
geometry of at least one bed is known across the structure. In this
case and in 2D, one can identify the best model as the one that best
restores a key folded bed to a straight line (Allmendinger, 1998).
The second approach is more convenient when the information
about the fold is limited to a small window along a topographic
profile. In this case, the best model is the one that deforms the beds
from their initial configuration, such that their intersections with



Fig. 2. 2D slices through the 3D matrix of objective function values produced by grid searching the forward reverse fault model over the range of values shown in Fig. 1a. Slices are
constructed at a. Best fault slip (100 units), b. Best trishear angle (58�), and c. Best P/S (1.5). In each diagram, contours are objective function values. Contours below 200 are in
intervals of 50, from 200 to 1000 are in intervals of 200, and above 1000 are in intervals of 500.
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the topographic profile are the closest in agreement with the
measured beds intersections (Cardozo, 2005).

We limit our discussion to the first, ‘‘restoration’’ approach,
partly because its statistical description (objective function) is
simpler. However, there is nothing that prevents the optimization
algorithms discussed here from being applied to the second,
‘‘deformation’’ approach. For the restoration approach, the objec-
tive function (f) in 2D is expressed as:

f ¼
XN

i¼1

ðyi � a� bxiÞ2 (1)

where xi and yi are the cartesian coordinates of the N points on the
restored fold profile, and a and b are the coefficients of the linear
regression of the restored fold profile (i.e. intercept and slope of the line
that best fits the restored profile). Trishear inverse modeling is thus
a least squares minimization problem (Press et al.,1992). f is referred by
Allmendinger (1998) as the chi-square (c2). We prefer avoiding this
terminology because uncertainties are not included in Eq. (1).

3. Grid-search

In the grid-search algorithm, the parameter space is systemat-
ically searched within ranges and step sizes specified by the user.
Grid-search is a brute force strategy where every parameter
combination in the search matrix defined by the user is evaluated,
and the combination with the lowest value of the objective function
is identified as the solution. The advantage of the grid-search
algorithm is that it is not affected by local minima. If the step sizes
are small enough, the solution corresponds to the lowest value of
the objective function within the searched parameter space. The
disadvantage of the grid-search algorithm is that it is time
consuming. Grid searching for all six parameters of a 2D trishear
model, within realistic ranges and step sizes, involves testing
millions of models that take hours to run, even in the fastest
computer. Grid searching the parameter space of a 3D trishear
model, which can be up to fourteen dimensions, is not practical.

To illustrate the performance of the grid-search algorithm, we
use two forward 2D trishear models (Fig. 1): one for a reverse
(Fig. 1a), and one for a normal (Fig. 1b) fault. The models were
constructed using the simplest, linear velocity field for a symmetric
trishear zone (Zehnder and Allmendinger, 2000; their Eq. (6) with
s¼ 1). Modeling a synthetic fold geometry generated with known
parameters might seem circular, but is the only situation for which
we can evaluate with complete confidence the success of an inverse
algorithm. This is because synthetics are true representations of the
model, and unlike actual folds, they don’t have errors. In both, the
reverse (Fig. 1a) and normal (Fig. 1b) fault cases, bed 3 was used for
the inversion, the location of the fault tip (x and y) and ramp angle
were fixed, and the P/S, trishear angle (TA) and fault slip were
searched over the ranges and step sizes shown in Fig. 1 (172,200
models were evaluated in each case).

Figs. 2 and 3 show the results of the grid-search for the reverse
(Fig. 2) and normal (Fig. 3) fault models of Fig. 1. The statistics are
illustrated as 2D slices through the 3D matrix of objective func-
tion (Eq. (1)) values produced by the grid-search. In both, the
reverse (Fig. 2) and normal (Fig. 3) fault models: (i) the best-fit
parameters are very close to the parameters of the forward
model, (ii) there are no local minima in the parameter space,
(iii) there is an inverse correlation between P/S and trishear angle



Fig. 3. 2D slices through the 3D matrix of objective function values produced by grid searching the forward normal fault model over the range of values shown in Fig. 1b. Slices are
constructed at a. Best fault slip (�100 units), b. Best trishear angle (41�), and c. Best P/S (1.9). In each diagram, contours are objective function values. Contours below 200 are in
intervals of 50, from 200 to 1000 are in intervals of 200, and above 1000 are in intervals of 500.
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(Figs. 2a and 3a; Allmendinger et al., 2004), and (iv) the solution
is well constrained in fault slip (Figs. 2b, c and 3b, c). Interestingly,
the solution is more constrained in P/S than in trishear angle in
the reverse fault model, where a 0.2 change in P/S close to the
minimum corresponds to about 15� change in trishear angle
(Fig. 2a; Allmendinger et al., 2004). In the normal fault model, on
the contrary, a 0.2 change in P/S close to the minimum corre-
sponds to just about 5� change in trishear angle (Fig. 3a). This can
be explained by the different orientations of the triangular zone
Table 1
Optimized searches for the parameters a that best fit the forward reverse fault model
of Fig. 1a. a0 is the initial guess, and af the best-fit parameters. amin and amax are
lower and upper bounds for fmincon.

Function a¼ [RA, P/S, TA, Slip]a a¼ [xt, yt, RA, P/S, TA, Slip]b

fminsearch a0¼ [35, 2.5, 75, 175] a0¼ [400, 100, 35, 2 5, 75, 125]
af¼ [29.7, 1.51, 58.5, 101] af¼ [428, 73, 25.7, 1 5, 57.1, 1, 115]
Iterations¼ 326 Iterations¼ 659

fminunc a0¼ [35, 2.5, 75, 175] a0¼ [400, 100, 35, 2.5, 125]
af¼ [29.7, 1.51, 58.5, 101] af¼ [452, 87, 27.3, 2.2, 46.4, 111]
Iterations¼ 42 Iterations¼ 17

Number of function evaluations exceeded

fmincon amin¼ [20, 1, 40, 0] amin¼ [300, 0, 20, 1, 40, 0]
amax¼ [40, 3, 80, 200] amax¼ [500, 200, 40, 3, 80, 200]
a0¼ [35, 2.5, 75, 175] a0¼ [400, 100, 35, 2.5, 75, 125]
af¼ [29.7, 1.51, 58.5, 101] af¼ [430, 75, 29.9, 1.5, 59.7, 100]
Iterations¼ 21 Iterations¼ 51

a Model parameters are: [30, 1.5, 60, 100].
b Model parameters are: [430, 75, 30, 1.5, 60, 100].
of shear with respect to bedding in the models. In the normal
fault model (Fig. 1b) the triangular zone of shear traverses faster
the stratigraphy than in the reverse fault model (Fig. 1a).
4. Optimization

Optimization algorithms are iterative. They begin with an initial
guess of the values of the model parameters, and generate
a sequence of improved estimates until they reach a minimum of
the objective function. The strategy to move from one iterate to the
next differentiates one algorithm from another (Nocedal and
Wright, 1999). Contrary to the grid-search algorithm, optimization
algorithms do not systematically search the parameter space for
a minimum of the objective function, but rather traverse the
parameter space towards a minimum. The advantage of optimiza-
tion algorithms is that they are significantly faster than the grid-
search algorithm. The disadvantage is that they do not always find
the lowest minimum (although the probability of being trapped in
a local minimum may be lower for global search methods such as
simulated annealing and genetic algorithms). In general, gradient-
based optimization algorithms find the minimum closest to the
initial guess in a descent direction. This is particularly a problem in
actual fold data for which the objective function might have several
local minima. As we show later, this problem can be overcome by
running several local optimization problems distributed over the
parameter space, and/or by constraining the optimization
(i.e. setting upper and lower parameter bounds).

In this paper, we apply three optimization functions from the
MATLAB Optimization Toolbox� to trishear inverse modeling.



Fig. 4. a. fminsearch, b. fminunc, and c. fmincon searches for the P/S, trishear angle and fault slip that best fit the forward reverse fault model of Fig. 1a. The paths of the optimization
algorithms (black circles and lines) are shown on: P/S versus trishear angle (left), P/S versus fault slip (middle), and trishear angle versus fault slip (right) diagrams. Iteration
numbers on the paths indicate the progression of the search. Gray contours are objective function values on the 2D slices of Fig. 2. Contours are as in Fig. 2.
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These functions are fminsearch, fminunc, and fmincon (MATLAB
Optimization Toolbox� 4 User’s Guide). fminsearch and fminunc
perform unconstrained nonlinear optimization (i.e. no constraints
on the parameters), while fmincon performs constrained nonlinear
optimization (i.e. explicit constraints on the parameters). fmin-
search uses the Nelder-Mead simplex method (Lagarias et al., 1998).
In n dimensions, this method evaluates the objective function over
a polytope (a simplex) of nþ 1 points in the parameter space (in 2D,
the simplex is a triangle). At each iteration, fminsearch computes
the objective function at the points of the simplex, deletes the point
with the highest (worst) objective function, and replaces it by
a new point giving a new simplex. Where appropriate, the simplex
can shrink or grow in size. This is analogous to flopping a triangle
around the parameter space until it finds a minimum. fminsearch
stops when the objective function is the same (within some toler-
ance) in all points of the simplex, or when the size of the simplex is
less than the specified tolerance. fminsearch requires no gradient
information and can handle function discontinuities. The disad-
vantage of fminsearch is that it converges very slowly to the solu-
tion, especially for searches of three or more parameters.

Without information about the gradient of the objective function,
fminunc uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-
Newton method with a mixed quadratic and cubic line search
procedure (MATLAB Optimization Toolbox� 4 User’s Guide). At each
iteration, fminunc determines a direction of search by updating the
approximation of the Hessian matrix (second order partial derivative)
of the objective function, using a BFGS formula (Nocedal and Wright,
1999). After choosing the direction of search, fminunc uses a mixed
quadratic and cubic polynomial interpolation method to determine
how far to move in the search direction. This strategy determines
three points along the search direction that bracket a minimum of the
objective function, and uses cubic interpolation to estimate the
minimum at each line search. The advantage of fminunc is that it
converges rapidly to the solution. As the optimization proceeds,
fminunc ‘‘learns’’ about the shape of the objective function and
‘‘adapts’’ next iterates to this shape. The disadvantage of fminunc is
that it requires more function evaluations to approximate the Hessian
and do the line search, fminunc cannot handle discontinuities.

Without information about the gradient of the objective func-
tion, fmincon uses a sequential quadratic programming (SQP)
method, which generates iterates by solving quadratic subproblems
(MATLAB Optimization Toolbox� 4 User’s Guide; Nocedal and
Wright, 1999). At each iteration, fmincon approximates the Hessian
of the Lagrangian for the constrained optimization problem using
a Quasi-Newton method and the BFSG formula (Nocedal and Wright,
1999). fmincon then uses this approximation to generate a quadratic
programming (QP; Nocedal and Wright, 1999) subproblem, which
fmincon solves using an active set strategy (Gill et al., 1991). The
solution to the QP problem produces a search direction vector, which
fmincon uses to form a new iterate. The step size is determined in



Fig. 5. a. fminsearch, b. fminunc, and c. fmincon searches for the P/S, trishear angle and fault slip that best fit the forward normal fault model of Fig. 1b. The paths of the optimization
algorithms (black circles and lines) are shown on: P/S versus trishear angle (left), P/S versus fault slip (middle), and trishear angle versus fault slip (right) diagrams. Iteration
numbers on the paths indicate the progression of the search. Gray contours are objective function values on the 2D slices of Fig. 3. Contours are as in Fig. 3.
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order to produce a sufficient decrease in the objective function
(MATLAB Optimization Toolbox� 4 User’s Guide). fmincon often
converges to the solution in fewer iterations than fminunc. One of
the reasons for this is that, because of limits on the parameter space,
fmincon can make informed decisions regarding directions of search
and step size. The disadvantage of fmincon is that it requires more
function evaluations than fminunc to form a new iterate. Also the
algorithm requires a feasible point to start.

In all, fminsearch, fminunc, and fmincon, scaling of the param-
eters is an important issue. Before inverse modeling, we scale the
fault slip and location of the fault tip (x and y in 2D) so that their
values are within about an order of magnitude of 1. Trishear and
ramp angles are converted to radians. This guarantees that all
parameters (including the P/S) are within about an order of
magnitude of 1. We then solve the optimization problem in terms of
the scaled parameters. This makes the solution more balanced
(Nocedal and Wright, 1999).

Figs. 4 and 5 show the results of optimized searches for the
reverse (Fig. 4) and normal (Fig. 5) fault models of Fig. 1. As in the
grid-search of Figs. 2 and 3, bed 3 was used for the inversion,
the location of the fault tip and ramp angle were fixed, and the
algorithms searched for the best-fit P/S, trishear angle (TA), and
fault slip. For the reverse fault model (Fig. 4), the initial guess (a0)
was [2.5, 75�, 175] (P/S, trishear angle, and fault slip in units). For
the normal fault model (Fig. 5), a0 was [2.5, 55�, �175]. fmincon
lower (amin) and upper (amax) bounds for the reverse fault model
(Fig. 4c) were [1, 40�, 0] and [3, 80�, 200], and for the normal fault
model (Fig. 5c) they were [1, 20�,�200] and [3, 60�, 0]. In Figs. 4 and
5, the paths of the optimization algorithms are shown over the two-
dimensional slices and objective function contours of Figs. 2 and 3,
and some of the iterations are labeled to show the progression of
the search.

All three, fminsearch (Figs. 4a and 5a), fminunc (Figs. 4b and 5b),
and fmincon (Figs. 4c and 5c) find best-fit parameters (af) that are
very close to the parameters of the forward models. The algorithms
find the best fault slip very fast, and move along the best fault slip in
search for the best P/S and trishear angle (columns 2 and 3 in Figs. 4
and 5). In the reverse fault model (Fig. 4), the algorithms find the
best P/S faster than the best trishear angle, since the model is well
constrained in P/S. In the normal fault model (Fig. 5), the algorithms
wondered as much to find the best P/S as to find the best trishear
angle. Both fminunc (Figs. 4b and 5b) and fmincon (Figs. 4c and 5c)
converge faster to the solution than fminsearch (Figs. 4a and 5a).
Once the best fault slip is found, fminunc moves systematically
towards the solution (Figs. 4b and 5b), while fmincon takes larger,
bolder steps (Figs. 4c and 5c). This allows fmincon to converge to
the solution in fewer iterations. For example in the reverse fault
model, fmincon finds the best-fit parameters in just 10 iterations



Fig. 6. Fault-propagation fold from the Hudson Valley fold and thrust belt (New York,
USA; Mitra, 1990). Simplified tracing of the photograph by Allmendinger (1998). Scale
is in pixel units. Table below shows the range of values tested in the grid-search
procedure (gray contours, Fig. 7).

Fig. 7. a. fminsearch, b. fminunc, and c. fmincon searches for the P/S, trishear angle and faul
and lines) are shown on P/S versus trishear angle diagrams. Iteration numbers on the paths i
function on 2D slices through the 3D matrix of objective function values produced by grid se
best fault slip estimated by the optimization algorithm. Contours below 5000 are in interv
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(Fig. 4c). Because there are no local minima in the parameter space,
the optimization algorithms converge to the minimum from any a0.
The time of solution is less than 5 s. All times reported in this note
were measured in a 2.4 GHz PC with 3.0 GB of RAM.

Table 1 shows the results of more demanding searches for bed 3
of the reverse fault model of Fig. 1a. Searching in addition for the
best ramp angle (RA) from an a0 of [35�, 2.5, 75�, 175] (ramp angle,
P/S, trishear angle, and fault slip in units) produces best-fit
parameters (af) that are very close to the parameters of the forward
model (column 2, Table 1). In this case, there are no local minima
and all three optimization algorithms converge to the minimum
from any a0. fminunc and fmincon converge much faster to the
solution than fminsearch. Searching for all six parameters of the 2D
trishear model, however, is more complicated. This is because,
contrary to the previous examples, the six-dimensional parameter
space has local minima. Searching with the unconstrained, fmin-
search and fminunc, optimization algorithms can give erroneous
results if a0 is far from the correct parameters. In Table 1, the
selected a0 of [400, 100, 35�, 2.5, 75�, 175] (x and y location of the
fault tip in units, ramp angle, P/S, trishear angle, and fault slip in
units) gives moderately good results (af) for fminsearch, and not so
good for fminunc (column 3, Table 1). Searching with the con-
strained fmincon, optimization algorithm (within the amin and amax

limits shown in Table 1) gives much better results. This is because
erroneous values such as negative or very large P/S, very low or
large ramp angle, trishear angle, or fault slip, can be avoided. For
the selected a0, fmincon converges to the global minimum, and the
best-fit parameters (af) are very close to the parameters of the
t slip that best fit bed 3 of Fig. 6. The paths of the optimization algorithms (black circles
ndicate the progression of the search. Gray contours show the variation of the objective
arching the section over the ranges shown in Fig. 6. In a–c, slices are constructed at the
als of 1000, and above 5000 are in intervals of 5000.



Fig. 8. True-3D forward trishear models and their key parameters, a. Reverse fault, b. Normal fault. Contours on bed are elevation. Models a and b were fed into the optimized search
(Figs. 9 and 10 and Table 2) procedure to test the accuracy of this technique.
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forward model (column 3, Table 1). fmincon finds a good solution in
12 s, as opposed to the hours this would take with the grid-search
method. However with fmincon, not all a0 guesses converge to the
lowest minimum. Some a0, especially close to the lower (amin) and
upper (amax) bounds, are not feasible points to start the search. In
this case, it helps to run several (five or so) optimized searches with
different a0 spanning the constrained parameter space along one
key parameter, for example fault slip. One of these searches will
surely find the lowest minimum.

Local minima are especially challenging in the inversion of
actual fold data for which the trishear model might not be a perfect
representation. To illustrate this, we conduct grid and optimized
searches for the trishear model that best fits a meter size fault-
propagation fold from the Hudson Valley fold and thrust belt (Fig. 6.
Mitra, 1990; his Fig. 21). The same structure was modeled by All-
mendinger (1998, his Figs. 11 and 12) using the grid-search method.
In this structure, the location of the fault tip and ramp angle are
known; thus, the search is for three parameters: P/S, trishear angle
(TA), and fault slip (Fig. 6). Grid searching the parameters that best
fit bed 3 in Fig. 6, over the range of parameter values shown in Fig. 6
(testing 430,500 models), produces an af of [2.4, 36�, 290] (P/S,
trishear angle, and fault slip in pixel units). Doing the same search
with the unconstrained optimization algorithms fminsearch and
fmincon from an a0 of [2.5, 40�, 500], however, result in af estimates
of [3.8, 18�, 535] and [3.5, 20�, 475], respectively (Fig. 7a, b).
Repeating the search with the constrained optimization algorithm
fmincon from the same a0, and with amin and amax limits of [1.5,
20�, 0] and [3.5, 60�, 1000], results in an af of [2.38, 37�, 292]
(Fig. 7c), which is close to the af of the grid-search.

Contours of the objective function (gray lines in Fig. 7) at the best
slip estimated by the optimization algorithms show that there are
several local minima in the parameter space. In all three optimized
searches, af coincides with a minimum, and the value of the objec-
tive function at this minimum is low. It is about 2100 units2 in
fminsearch and fminunc (Fig. 7a, b), and 1600 units2 in fmincon
(Fig. 7c). Thus, any of the solutions af provided by the optimization
algorithms is statistically correct. The best-fit values (af) are strongly
dependent on the initial guess (a0). For example, running an
unconstrained search with fminunc from an a0 of [2.5, 40�, 400]
(lower fault slip than in the previous fminunc search), results in an af

of [2.38, 37�, 292], which is close to the af of the grid-search. Running
a constrained search with fmincon from an a0 of [3.5, 40�, 500]
(higher P/S than in the previous fmincon search), results in an af of
[3.5, 20�, 475]. Performing searches for the parameters that best fit
other beds in the section further constrain the solution. fmincon
searches for beds 1 and 6 of the section (Fig. 6), with the same a0 and
amin and amax limits, give af values of [3.5, 24�, 242] and [2.5, 33�,
280], respectively. fminsearch and fminunc searches for the same



Fig. 9. a. fminsearch, b. fminunc, and c. fmincon searches for the P/S, trishear angle and fault slip that best fit the 3D forward reverse fault model of Fig. 8a. The paths of the optimization
algorithms are shown on: P/S at fault tip 1 versus P/S at fault tip 2 (left), trishear angle at fault tip 1 versus trishear angle at fault tip 2 (middle), and fault slip at fault tip 1 versus fault slip at
fault tip 2 (right) diagrams. Iteration numbers on the paths indicate the progression of the search. In all diagrams, star indicates the parameters of the forward model.
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beds, give erroneous results (very large fault slip, and very low P/S
and trishear angle). This suggests that a P/S of 2.4–2.5, a trishear
angle of 34–37�, and a fault slip of 280–290 units, are appropriate to
fit beds 3 and 6. An af of [2.38, 37�, 292] fits moderately well the
structure (see Allmendinger, 1998, his Fig. 11c).

The above example shows that local minima exist in the inver-
sion of real fault-propagation folds, even if the parameter space has
low dimensions. These local minima highly influence the result of
the optimization algorithms. In comparison to the grid-search
method, this is a natural disadvantage of the optimization methods.
At the same time, the speed of the optimization methods makes it
easy to sample the parameter space for local minima. When
inverting real structures, one should not be content with the first
solution, but rather run several searches with different a0 to prove
the consistency (or inconsistency) of the solution. For example, one
can feed the optimization routines with a coarse grid of reasonable
a0 values to ensure that local minima are avoided. This is almost
like combining the grid-search and the optimization methods.
Local minima may render the unconstrained optimization methods
(fminsearch and fminunc) unusable. The unconstrained optimiza-
tion methods just deliver physically erroneous af estimates. In this
case, the only solution is to use fmincon and constrain the
parameter space within physically meaningful limits.

5. 3D inverse modeling

By analogy with the restoration, 2D inverse modeling approach
(Allmendinger, 1998), in 3D we seek the combination of trishear
parameters that best restores a folded surface to a plane. In 3D, the
objective function (f) is expressed as:

f ¼
XN

i¼1

ðzi � a� bxi � cyiÞ2 (2)

where xi, yi and zi are the cartesian coordinates (z being elevation)
of the N points on the restored fold surface, and a, b and c are the



Fig. 10. a. fminsearch, b. fminunc, and c. fmincon on a search for the P/S, trishear angle and fault slip that best fit the 3D forward normal fault model of Fig. 8b. The paths of the
optimization algorithms are shown on: P/S at fault tip 1 versus P/S at fault tip 2 (left), trishear angle at fault tip 1 versus trishear angle at fault tip 2 (middle), and fault slip at fault tip
1 versus fault slip at fault tip 2 (right) diagrams. Iteration numbers on the paths indicate the progression of the search. In all diagrams, star indicates the parameters of the forward
model.
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coefficients of the planar regression of the restored fold surface. 3D
trishear inverse modeling is a least squares minimization problem
on which optimization methods can be applied.

To illustrate the performance of the optimization algorithms, we
use two forward 3D trishear models (Fig. 8): one for a reverse
(Fig. 8a), and one for a normal (Fig. 8b) fault. The models were
constructed using the true-3D trishear algorithm of Cristallini et al.
(2004). In both models, the bed is made of 10,000 points (twenty
times as many as in a bed of the synthetic 2D models of Fig. 1), the
P/S and trishear angle (TA) vary linearly along fault strike, and the
fault slip is constant and oblique to fault strike (slip rake¼ 70�,
Fig. 8). For inverse modeling of both, the reverse (Fig. 8a) and
normal (Fig. 8b) fault cases, the location of the fault tips (x, y, and z),
ramp angle, and slip rake were fixed, and the P/S, trishear angle and
fault slip at the fault tips were searched (a total of six unknown
parameters).

Figs. 9 and 10 show the results of optimized searches for the
reverse (Fig. 9) and normal (Fig. 10) fault models of Fig. 8. For the
reverse fault model (Fig. 9), the initial guess (a0) was [1.5, 1.5, 60�,
60�, 100, 100] (P/Stip1, P/Stip2, trishear angletip1, trishear angletip2,
fault sliptip1, and fault sliptip2 in units). For the normal fault model
(Fig. 10), a0 was [1.5, 1.5, 60�, 60�,�100,�100]. fmincon lower (amin)
and upper (amax) bounds for the reverse fault model (Fig. 9c) were
[0.5, 0.5, 20�, 20�, 0, 0] and [3.5, 3.5, 90�, 90�, 200, 200], and for the
normal fault model (Fig. 10c) they were [0.5, 0.5, 20�, 20�, �200,
�200] and [3.5, 3.5, 90�, 90�, 0, 0]. In Figs. 9 and 10, the paths of the
optimization algorithms are shown on parametertip1 versus
parametertip2, diagrams, and some of the iterations are labeled to
show the progression of the search. The stars in Figs. 9 and 10
indicate the parameters of the forward models.

All three, fminsearch (Figs. 9a and 10a), fminunc (Figs. 9b and
10b), and fmincon (Figs. 9c and 10c) find best-fit parameters (af) that
are very close to the parameters of the forward models. The algo-
rithms find the best fault slip at the fault tips faster (third column in
Figs. 9 and 10), and spend more iterations finding the best P/S and
trishear angle (first and second columns in Figs. 9 and 10). Gradient-
based fminunc (Figs. 9b and 10b) and fmincon (Figs. 9c and 10c)
converge faster to the solution than fminsearch (Figs. 9a and 10a).
The time of solution for fminsearch is 6 min, while for fminunc and
fmincon is 2 and 2.5 min, respectively. All three optimization



Table 2
Optimized searches for the parameters a that best fit the 3D forward reverse fault model of Fig. 8a. a0 is the initial guess, and af the best-fit parameters. amin and amax are lower
and upper bounds for fmincon.

Function a¼ [P/S1, P/S2, TA1, TA2, Slip1, Slip2, Rake]a a¼ [RA, P/S1 P/S2, TA1 TA2, Slip1 Slip2, Rake]b

fminsearch a0¼ [1.5, 1.5, 60, 60, 100, 100, 90] a0¼ [25, 1.5, 1.5, 60, 60, 100, 100, 90]
af¼ [0.99, 2.01, 59.7, 38.7, 172, 172, 72.4] af¼ [29.8, 1.0, 2.0, 59.5, 35.8, 158, 164, 91.8]
Iterations¼ 714 Iterations¼ 1000

Maximum number of iterations exceeded

fiminunc a0¼ [1.5, 1.5, 60, 60, 100, 100, 90] a0¼ [25, 1.5, 1.5, 60, 60, 100, 100, 90]
af¼ [0.99, 2.01, 59.7, 38.7, 172, 172, 72.4] af¼ [29.9, 1.0, 2.0, 59.7, 39.1, 172, 172, 72.6]
Iterations¼ 41 Iterations¼ 78

fmincon amin¼ [0.5, 0.5, 20, 20, 0, 0, 60] amin¼ [20.9, 0.5, 0.5, 20, 20, 0, 0, 60]
amax¼ [3.5, 3.5, 90, 90, 200, 200, 120] amax¼ [40, 3.5, 3.5, 90, 90, 200, 200, 120]
a0¼ [1.5, 1.5, 60, 60, 100, 100, 90] a0¼ [25, 1.5, 1.5, 60, 60, 100, 100, 90]
af¼ [0.99, 2.01, 59.7, 38.7, 172, 172, 72.4] af¼ [29.9, 1.0, 2.0, 59.7, 39.1, 172, 172, 72.6]
Iterations¼ 39 Iterations¼ 49

a Model parameters are: [1.0, 2.0, 60, 40, 175, 175, 70].
b Model parameters are: [30, 1.0, 2.0, 60, 40, 175, 175, 70].
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algorithms converge to the same solution from any a0. This suggests
that the six-dimensional parameter space has no local minima.

Table 2 shows the results of more demanding searches for the 3D
reverse fault model of Fig. 8a. Searching in addition for the slip rake
with any of the optimization algorithms, produces best-fit param-
eters (af) that are very close to the parameters of the forward model
(column 2, Table 2). This happens regardless of the value of a0. The
seven-dimensional parameter space has no local minima. The same
result is obtained when searching in addition for ramp angle
(Column 3, Table 2). The eight-dimensional parameter space has no
local minima. The rate of convergence of the optimization algo-
rithms is different. For the eight parameters search (column 3,
Table 2), fminsearch still does not converge to the solution after
17 min, while gradient-based fminunc and fmincon converge to the
solution in 9 and 6 min, respectively. 3D trishear inverse modeling
using the simplex method (fminsearch) is not efficient. Searching for
all fourteen parameters of the 3D trishear model is complicated. This
is because the parameter space has several local minima. In this case,
it is necessary to constrain the parameter space as much as possible,
and to use an a0 as close as possible to the suspected solution.
Fig. 11. Strategy to generate realizations from a fold profile (dark line). Each point on
the profile has uncertainties in x and y that obey a normal probability distribution,
with a mean (m) equal to the measured x or y and a standard deviation (s). Uncer-
tainties within a distance along the bed lower than the correlation length are corre-
lated. Gray lines are realizations.
As in 2D trishear inverse modeling, local minima should be
expected when inverting actual 3D fold data, even if the parameter
space has low dimensions. Running several searches with different
a0 to sample the local minima, and constraining the optimized
search, should help to overcome this problem. 3D inverse modeling
works with either the pseudo-3D (Cristallini and Allmendinger,
2001) or true-3D (Cristallini et al., 2004) trishear algorithms.
However, to restrict the number of searched parameters to those at
the end fault tips, a simple mathematical function should describe
the variation of the parameters along the fault. For the true-3D
trishear algorithm, this function should be linear. For the pseudo-
3D trishear algorithm, this function can be linear or elliptical
(Cardozo, 2008). A simple variation of trishear parameters along
the fault might not be the case in a real structure. If more complex
variations of parameters such as fault slip are observed along fault
strike, and if the structure is well exposed in several cross sections
perpendicular to fault strike; it is more appropriate to run 2D
trishear inverse modeling of the cross sections and to integrate the
results of the 2D inversions in a forward pseudo-3D trishear model
(Cristallini and Allmendinger, 2001; Cardozo, 2008).

6. Uncertainties of best-fit parameters

Fold data are not exact. They are subject to errors of various kinds,
including imaging and interpretation errors. These errors introduce
some uncertainty in the estimated best-fit parameters (af). In this
section, we describe a methodology to estimate the uncertainties of
af. This methodology uses the fold data (with estimated parameters
af0) and an assumed error distribution at the data points to generate
several synthetic datasets (i.e. realizations). Inverse modeling of
these realizations gives a set of simulated best-fit parameters (af1,
af2,.) that is distributed around af0, and from which we can
determine the probability distribution and uncertainties of af. This
technique is known as the randomized maximum likelihood (RML)
method (Oliver et al., 1996). An accurate representation of the
probability distribution of af may require the inverse modeling of
hundreds or thousands of fold realizations; a task that can be
significantly expedited with the optimization algorithms.

Fig. 11 shows the strategy we use to generate realizations from
the fold data. For simplicity, we only discuss 2D fold profiles,
although the methods described here can be extended to 3D fold
surfaces. Each of the N points on the fold profile (black line in Fig.11)
has errors in location in x and y. These errors follow a normal
probability distribution, with a mean (m) equal to the measured x or y
and a standard deviation (s, Fig. 11). The errors in location are
correlated along the profile up to a maximum distance or correlation



Fig. 12. Application of the RML method to the forward reverse fault model of Fig. 1a. a. Bed 3 in Fig. 1a (black line) and its realizations (gray lines). Realizations are based on
a standard deviation of 2.236 units and a correlation length of 10,000 units, b–f. Histograms for uncertainties in b. Ramp angle, c. P/S, d. Trishear angle, e. Fault slip, and f. Fault
propagation. In b–f, black thick line is a normal distribution (with mean jm and standard deviation s) fit to the histogram. Dash lines delimit the 1s range of permissible values
(i.e. 68% confidence interval).
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length (lc). For a spherical variogram model (Davis, 2002), the N�N
matrix R that describes the correlation of the errors in location is:

Rij ¼
�

1þ 0:5
�
h3 � 3h

�
; h < 1

0; h � 1
(3)

where h is lij/lc and lij is the distance along the profile between
points i and j (Fig. 11). The N�N covariance matrix (C) is:
C ¼ S*R*S (4)
where S is an N�N diagonal matrix with the diagonal elements
equal to the standard deviation (s), and the asterisk denotes matrix
multiplication. We can generate realizations (gray lines in Fig. 11)
from the fold profile with measured locations in x and y (mx, my) and
covariance matrix (C) by using the following process (Aster et al.,
2005): (i) Find the Cholesky factorization C¼ L*LT, (ii) Let z be



Fig. 13. Best-fit trishear model (black thick lines) superimposed on depth-converted seismic section of the Santa Fe Springs anticline. Seismic reflection data and marked strati-
graphic units (thin, dashed lines) are from Shaw and Shearer (1999, their Fig. 1). Tfu and Tfl are the upper and lower members of the Fernando Formation.
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a vector of N independent (0,1) random numbers, (iii) Let x and y
locations of points on realization be x¼ mxþ L*z and y¼ mxþ L*z.

Fig. 12 shows the application of the RML method to bed 3 of the
forward trishear model of Fig. 1a (reverse fault). In this case, the
trishear model is a perfect representation of the fold profile and
the estimated best-fit parameters for bed 3 (af0) are very close to
the parameters of the forward model. The purpose of the RML
method is to determine the sensitivity of af to random errors (i.e.
uncertainties) in the location of the beds. Fig. 12a shows the profile
of bed 3 (black line) and its realizations (gray lines). 1000 realiza-
tions were created using a s of 2.236 units (variance¼ 5 units2) and
an lc of 10,000 units. lc must be large (ten times the length of the
bed) in order to obtain smooth profiles. Optimized searches for the
ramp angle, P/S, trishear angle, and fault slip that best fit each
realization provide a set of simulated best-fit parameters (afi).
Specifically, we used fminunc with an initial guess (a0) of [35�, 2.5,
75�, 175] (ramp angle, P/S, trishear angle, and fault slip in units), and
only included in the statistics those realizations for which fminunc
converged to the solution. The inversion of the 1000 realizations
took about 2 h. The results are shown as probability distributions of
the difference between afi and af0 (Fig. 12b–f). In these diagrams,
black, thick lines are normal distribution fits (with mean m and
standard deviation s) to the histograms, and dashed vertical lines
delimit 68% (�s) confidence intervals. For s errors in x and y loca-
tions of 2.236 units, the s errors in ramp angle, P/S, trishear angle,
fault slip, and fault propagation are 4.2�, 0.07, 3.86�, 13.6 units, and
20.2 units, respectively (Fig. 12b–f). 68% of the afi around the correct
af fall within intervals in ramp angle, P/S, trishear angle, fault slip,
and fault propagation of 24.9–33.2�, 1.45–1.6, 54.2–61.9�, 91.1–
118.2 units, and 139–179.4 units, respectively (Fig. 12b–f). Similar
results are obtained using other beds in the section (for example bed
4 in Fig. 1a). Best-fit P/S and trishear angle values are sensitive to
variations of fold shape. For example, not including errors in x
locations in the realizations (narrower width of realizations in the
forelimb area), results in larger s errors for the best-fit P/S and
trishear angle (s¼ 0.2 for best-fit P/S, and 9.8� for best-fit trishear
angle). Best-fit ramp angle and fault slip values are not sensitive to
variations of fold shape, but rather to variations in depth in the flat
hanging wall and footwall areas, which determine the fault throw.

As an example of the application of the RML method to actual
fold data, we analyze a buried fold-fault pair in the Los Angeles
basin, the Santa Fe Springs anticline and the underlying Puente
Hills thrust fault (Shaw and Shearer, 1999; Fig. 13). This structure
was studied by Allmendinger and Shaw (2000), who showed that
the tip of the Puente Hills thrust initiated at the same position as
the 1987 M6.0 Whittier Narrows earthquake. Because of the
possible implications of this study for earthquake hazard assess-
ment, an estimate of the uncertainties of af is highly desirable. The
thrust fault is well-defined in the seismic reflection data (Fig. 13).
The ramp angle is 29�. The location of the fault tip is not exactly
known and is assumed to be along the fault projection within the
gray, translucent rectangle of Fig. 13. The distance along the fault
between the estimated fault tip and the lower end of the gray
rectangle in Fig. 13 is defined here as lft. Thus the search is for the
lft, P/S, trishear angle, and fault slip that best fit one of the pre-
growth beds of Fig. 13. For this analysis, we choose the top of the
lower Fernando Formation (bed 4 in Fig. 13). With an a0 of [1.0 km,
2.5, 60�, 7.5 km], amin of [0, 1.5, 40�, 0], and amax of [2 km, 3.5, 80�,
15 km], the constrained optimization algorithm fmincon gives an
af0 for bed 4 of [1.44 km, 2.52, 71�, 6.7 km] (lft, P/S, trishear angle,
and fault slip). A forward trishear model with this af0 (black, thick
lines in Fig. 13) fits beds 4–7 well, and beds 1–3 not so well (Fig. 13).
The thrust nucleates 17 km down dip from its final (current) loca-
tion according to this model. This estimate is close to Allmendinger
and Shaw (2000) who determined a propagation distance of
18.7 km for the Puente Hills thrust. Differences between our af0

estimate and Allmendinger and Shaw (2000) af0 estimate can be
attributed to differences in the interpretation and digitization of
the beds, differences in fault slip increment, and differences in lft.
Reducing lft such that the fault tip is below bed 2 for example,
produces an af0 that fits beds 2 and 3 better, fits beds 4–7 quite well
(Fig. 13), and is closer to Allmendinger and Shaw (2000) estimate.



Fig. 14. Application of the RML method to the Santa Fe Springs anticline, a. Top of the lower Fernando Formation (black line) and its realizations (gray lines). Realizations are based
on a standard deviation of 50 m and a correlation length of 100 km. b–f. Histograms for uncertainties in b. Location of fault tip along fault projection (lft), c. P/S, d. Trishear angle,
e. Fault slip, and f. Fault propagation. In b–f, black thick line is a normal distribution (with mean m and standard deviation s) fit to the histogram. Dash lines delimit the 1s range of
permissible values (i.e. 68% confidence interval).
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However, for the RML analysis, we prefer not to constrain the
location of the fault tip so much.

Fig. 14 shows the application of the RML method to the Santa Fe
Springs anticline. Fig. 14a shows the top of the lower Fernando
Formation (black line) and its realizations (gray lines). 1000 reali-
zations were created using a s of 50 m and an lc of 100 km. This
makes the realizations fall within a distance �200 m from the
interpreted bed in a direction perpendicular to the bed. This
uncertainty is comparable with the possible uncertainty due to the
time-depth conversion of the seismic data, where a 10% error in
a seismic velocity of 4 km/s (a reasonable estimate for the Tertiary
sediments in the basin) at 1 s two-way travel time would yield an
uncertainty in the depth to the bed of �200 m. Inverse modeling of
the realizations with fmincon using the same a0, amin, and amax as
before, produces a set of simulated best-fit parameters (afi). As in the
synthetic case, we only included in the statistics those realizations
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for which fmincon converged to the solution. The inversion of the
1000 realizations took about 2 h. For s errors in x and y locations of
50 m, normal distribution fits to the probability distribution of
afi–af0 indicate that the s errors in lft, P/S, trishear angle, fault slip,
and fault propagation are 174 m, 0.04, 5.5�, 825 m, and 2231 m,
respectively (Fig.14b–f). There is 68% chance that the true parameter
values fall within intervals in lft, P/S, trishear angle, fault slip, and
fault propagation of 1218–1565 m, 2.48–2.56, 65–76�, 6.04–7.7 km,
and 15.1–19.6 km, respectively (Fig. 14b–f). The position of the 1987
M6.0 Whittier Narrows earthquake (Shaw and Shearer, 1999) is
within these 68% lft and fault propagation confidence intervals. The
uncertainties in af come mainly from uncertainties in trishear angle
and fault slip. The structure can be fit with relatively high trishear
angle and low fault slip, or vice versa (Fig. 14d, e). These results are
similar to Hardy and Allmendinger (in press), who conducted
inverse modeling of 200 realizations of the anticline using the grid-
search method. The computing time for the inversion of those 200
realizations is not reported in their publication.

7. Discussion

2D or 3D trishear inverse modeling is a minimization problem
on which optimization algorithms can be applied. In comparison to
the grid-search algorithm, the optimization algorithms discussed
here are significantly faster but less robust. The optimization
algorithms rapidly traverse the parameter space towards
a minimum of the objective function (especially gradient-based
algorithms), but this minimum is not necessarily the lowest
minimum in the parameter space. The performance of the opti-
mization algorithms is affected by local minima. This is a problem
in the inversion of actual fold data, where several local minima may
exist in the parameter space, even if the space has low dimensions
(i.e. few parameters searched). These local minima may cause non-
constrained optimization algorithms to give nonsensical, physically
meaningless results. We find that when modeling actual fold data,
the best is to use a constrained optimization algorithm, to set
physically meaningful limits on the parameters, and to conduct
several searches from different initial guesses (a0). The optimiza-
tion algorithms are fast, and therefore one should aim for several
runs that involve different optimization paths and sample different
regions in the parameter space. The application of the optimization
algorithms to trishear inverse modeling requires critical thinking
by the modeler. The optimization algorithms should not be used as
black boxes that provide a unique solution, but rather like efficient
means to test the robustness of a possible solution (i.e. a best-fit
model). In this sense, the optimization algorithms are comple-
mentary to the grid-search method and provide an additional
source of information that cannot easily be established with the
grid-search method (see for example Figs. 6 and 7).

Fast inverse modeling routines are a prerequisite for demanding
tasks such as 3D trishear inverse modeling, and estimating the
uncertainties of the best-fit parameters (af). Gradient-based optimi-
zation algorithms that rapidly converge to the solution are necessary
for these tasks. 3D trishear inverse modeling is limited by the
complexity of the spatial variation of the model parameters. Simple
linear or elliptical variation of trishear parameters along fault strike
can be managed with optimized 3D inversion routines. More complex
variations of model parameters in 3D are better accounted for
a combination of 2D trishear inverse modeling in cross sections
perpendicular to fault strike, and pseudo-3D trishear forward
modeling that integrates the results of the 2D inversions. Estimating
the uncertainties of af by the RML method involves the inverse
modeling of hundreds of fold realizations, which can be very
computing intensive if using a grid-search algorithm. Optimized
trishear inverse modeling renders this task possible within hours.
A drawback of the application of the optimization techniques to the
RML method, however, is that the optimization can deliver erroneous,
not statistically significant results for some realizations. Including
only those realizations for which the optimization converges to
a solution and/or for which the objective function is below
a maximum value ensures the correctness of the statistics data.
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